Theoretical study for regulatory property of scaffold protein on MAPK cascade: a qualitative modeling.
نویسندگان
چکیده
An integrated mathematical model, which incorporates scaffold proteins into a mitogen-activated protein kinases cascade, is constructed. By employing Monte Carlo simulation, regulatory property of scaffold protein on signaling ability for the mitogen-activated protein kinases cascade is investigated theoretically. It is found that (i) scaffold binding increases signal amplification if dephosphorylation is slow and decreases amplification if dephosphorylation is rapid. Also, increasing the number of scaffold decreases amplification if dephosphorylation is slow. (ii) The scaffold number can control the timing of kinase activation so that the time flexibility of signaling is enhanced. (iii) It is observed that for slow dephosphorylation case, scaffolds decrease the sharpness of the dose-response curves. While for fast dephosphorylation case, increasing scaffold number decreases the height of response, but the shape of graded response is sustained. Furthermore, the underlying mechanism and the correlation of our results with real biological systems are clarified.
منابع مشابه
Impact of heavy metal stress on plants and the role of various defense elements
Heavy metal (HMs) pollution is currently one of the serious issues for the environment and agriculture as it has a direct impact on the production yield. This situation has gained a rapid momentum in the present era due to the population pressure, industrialization, and various anthropogenic activities which in turn lead to oxidative ...
متن کاملSignal Response Sensitivity in the Yeast Mitogen-Activated Protein Kinase Cascade
The yeast pheromone response pathway is a canonical three-step mitogen activated protein kinase (MAPK) cascade which requires a scaffold protein for proper signal transduction. Recent experimental studies into the role the scaffold plays in modulating the character of the transduced signal, show that the presence of the scaffold increases the biphasic nature of the signal response. This runs co...
متن کاملRACK1, scaffolding a heterotrimeric G protein and a MAPK cascade.
Scaffold proteins of mitogen-activated protein kinase (MAPK) cascades play crucial roles in determining signal specificity, amplitude, and duration in yeast and mammals. Recently, RACK1 was identified as the first plant MAPK scaffold protein that connects heterotrimeric G protein with a MAPK cascade to form a unique signaling pathway in plant immunity.
متن کاملDifferential input by Ste5 scaffold and Msg5 phosphatase route a MAPK cascade to multiple outcomes.
Pathway specificity is poorly understood for mitogen-activated protein kinase (MAPK) cascades that control different outputs in response to different stimuli. In yeast, it is not known how the same MAPK cascade activates Kss1 MAPK to promote invasive growth (IG) and proliferation, and both Fus3 and Kss1 MAPKs to promote mating. Previous work has suggested that the Kss1 MAPK cascade is activated...
متن کاملEffect of the MAPK cascade structure, nuclear translocation and regulation of transcription factors on gene expression.
The mitogen activated protein kinase (MAP kinase) cascade system represents a highly conserved prototype of signal transduction by enzyme cascades. One of the best-studied properties of the MAPK system is its ability to convert graded input stimulus to switch-like all-or-none responses. Previous theoretical studies have centered on quantifying dual phosphorylated MAPK as a final output response...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical chemistry
دوره 147 3 شماره
صفحات -
تاریخ انتشار 2010